

A030284


a(n) is the least prime > a(n1) whose digits do not appear in a(n1).


10



2, 3, 5, 7, 11, 23, 41, 53, 61, 73, 89, 101, 223, 401, 523, 601, 727, 809, 1117, 2003, 4111, 5003, 6121, 7039, 8111, 9007, 11113, 20029, 31147, 50069, 71143, 80209, 111143, 200009, 311111, 400009, 511111, 600043, 711121, 800053, 911111, 2000003, 4111147, 5000263, 7111199, 8000023, 9111161
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sequence is infinite.  T. D. Noe, Jun 06 2007
a(n) may never have all of the 4 digits 1, 3, 7, 9: if a(n) has 3 of these digits then a(n+1) ends with the fourth one.  Pierre CAMI, May 06 2011


LINKS

T. D. Noe, Table of n, a(n) for n = 1..500


MATHEMATICA

ta={1}; Do[s1=IntegerDigits[Part[ta, Length[ta]]]; s2=IntegerDigits[Prime[n]]; If[Equal[Intersection[s1, s2], {}], Print[{Prime[n], Prime[n+1]}]; ta=Append[ta, Prime[n]]], {n, 1, 1000000}]; ta=Delete[ta, 1] (* Labos Elemer, Nov 18 2004 *)


PROG

(Haskell)
import Data.List (intersect)
a030284 n = a030284_list !! (n1)
a030284_list = f [] a000040_list where
f xs (p:ps) = if null $ intersect xs ys then p : f ys ps else f xs ps
where ys = show p
 Reinhard Zumkeller, Sep 21 2013


CROSSREFS

Cf. A030283, A229364, A000040.
Sequence in context: A236400 A288371 A158217 * A252791 A068148 A036344
Adjacent sequences: A030281 A030282 A030283 * A030285 A030286 A030287


KEYWORD

nonn,base


AUTHOR

Patrick De Geest


EXTENSIONS

More terms from Labos Elemer, Nov 18 2004


STATUS

approved



