Avoiding cadavers is good for you

There is a caveat to the title of this post. Avoiding cadavers is good for you if you’re very close to the cadaver. But that’s getting ahead of the game, so let’s back up:

There is growing evidence that uninfected animals can often sense and avoid infected individuals or infectious agents in the environment.  Or, conversely, uninfected animals may be attracted to infected individuals (see my old post about how disease is sexy).  Gypsy moths fall under the first category. Specifically, gypsy moths can become infected by a lethal (to them) bacilovirus when they ingest leaves contaminated by infectious gypsy moth cadavers, and previous work with these gypsy moths showed that they will preferentially eat uncontaminated leaves over contaminated leaves.

Obviously, these studies on the avoidance behavior of individuals were conducted because the authors thought that avoidance should affect an individual’s probability of becoming infected. These behaviors may affect population-level infection dynamics, too. So, does avoidance behavior affect pathogen transmission?

Eakin et al. (2015) used a really cool combination of laboratory experiments, field data, and modeling to answer this question. First, they parameterized two submodels using data from a laboratory experiment where they allowed individual caterpillars to feed on leaves that had one infectious cadaver on the surface. In the first submodel, they used model selection to figure out which mechanistic model best predicted a caterpillar’s probability of becoming infected. They found that the best model incorporated both how close to the infectious cadaver the uninfected caterpillar fed and how much the uninfected caterpillar ate. Just one bite of an infectious cadaver (which are ~78 bites total) increased the risk of infection by 0.4-4.7%. In the second submodel, they used model selection to figure out which stochastic simulation model best explained a caterpillar’s feeding decisions. They found that the best model included avoiding infectious cadavers. But here’s an interesting thing: the caterpillars don’t really detect and avoid cadavers until they are 0.7 mm away. Because eating a bite or two of infectious material doesn’t increase infection risk dramatically (just 0.4-4.7%), Eakin et al. (2015) suggest that caterpillars shouldn’t really go out of their ways to avoid cadavers; they should keep munching away until there is a cadaver right in front of them. Neat!

Finally, using the two parameterized submodels, Eakin et al. (2014) showed that the model predictions fit field data quite well, and the model that includes cadaver avoidance slightly outperformed the model without cadaver avoidance. At the highest densities of infectious cadavers, avoidance can reduce infection rates by 7% in a single transmission bout in the field. Cool!

I glossed over some cool math – like stochastic simulation models – so you should go check out the paper. Also, here is a relevant cartoon that, if nothing else, demonstrates my peculiar unique brand of humor:


(I don’t think Eakin et al. (2014) are selling caterpillar art on the Interwebs. But if they suddenly start to sell caterpillar art, I want 10% of the profit. Just saying. PS – this is a thing.)


Eakin, L., M. Wang, and G. Dwyer. 2015. The Effects of the Avoidance of Infectious Hosts on Infection. The American Naturalist 185:1.

2 thoughts on “Avoiding cadavers is good for you

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s